Search results

Search for "nonribosomal peptides" in Full Text gives 6 result(s) in Beilstein Journal of Organic Chemistry.

Chemoenzymatic synthesis of macrocyclic peptides and polyketides via thioesterase-catalyzed macrocyclization

  • Senze Qiao,
  • Zhongyu Cheng and
  • Fuzhuo Li

Beilstein J. Org. Chem. 2024, 20, 721–733, doi:10.3762/bjoc.20.66

Graphical Abstract
  • .20.66 Abstract Chemoenzymatic strategies that combine synthetic and enzymatic transformations offer efficient approaches to yield target molecules, which have been increasingly employed in the synthesis of bioactive natural products. In the biosynthesis of macrocyclic nonribosomal peptides, polyketides
  • polyketides; thioesterase; Introduction Nonribosomal peptides, polyketides, and their hybrids exhibit significant diversity and a broad spectrum of bioactivities [1][2][3]. Particularly, macrocycles from these three categories of natural products are vital resources for developing pharmaceuticals and drug
PDF
Album
Review
Published 04 Apr 2024

Development of a chemical scaffold for inhibiting nonribosomal peptide synthetases in live bacterial cells

  • Fumihiro Ishikawa,
  • Sho Konno,
  • Hideaki Kakeya and
  • Genzoh Tanabe

Beilstein J. Org. Chem. 2024, 20, 445–451, doi:10.3762/bjoc.20.39

Graphical Abstract
  • ; Introduction Nonribosomal peptides (NRPs) exhibit various biological activities and have been used as therapeutic agents, such as antibiotics, anticancer agents, and immunosuppressants [1]. Additionally, NRPs function as virulence factors, such as siderophores and genotoxins [2]. Therefore, inhibiting their
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2024

Secondary metabolites of Bacillus subtilis impact the assembly of soil-derived semisynthetic bacterial communities

  • Heiko T. Kiesewalter,
  • Carlos N. Lozano-Andrade,
  • Mikael L. Strube and
  • Ákos T. Kovács

Beilstein J. Org. Chem. 2020, 16, 2983–2998, doi:10.3762/bjoc.16.248

Graphical Abstract
  • , Kgs. Lyngby, Denmark 10.3762/bjoc.16.248 Abstract Secondary metabolites provide Bacillus subtilis with increased competitiveness towards other microorganisms. In particular, nonribosomal peptides (NRPs) have an enormous antimicrobial potential by causing cell lysis, perforation of fungal membranes
  • to understand their ecological role. Keywords: Bacillus subtilis; bacterial community; chemical ecology; Lysinibacillus fusiformis; nonribosomal peptides; surfactin; Introduction In nature, bacteria live in complex communities where they interact with various other microorganisms. Most microbial
  • Bacillus spp. produce various SMs [33][34]. The most prominent and bioactive SMs are nonribosomal peptides (NRPs), of which isoforms belong to the families of surfactins, fengycins, or iturins [35][36] (Figure 1). They are biosynthesised by large enzyme complexes, nonribosomal peptide synthetases (NRPSs
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2020

Enzyme-instructed morphological transition of the supramolecular assemblies of branched peptides

  • Dongsik Yang,
  • Hongjian He and
  • Bing Xu

Beilstein J. Org. Chem. 2020, 16, 2709–2718, doi:10.3762/bjoc.16.221

Graphical Abstract
  • utilizes nonlinear peptides. For example, nonribosomal peptides exist in other geometries, such as branched (e.g., bleomycin) or cyclic peptides (e.g., vancomycin) [31]. While the understanding of the synthesis of branched peptides is well-developed, the self-assembly and enzymatic conversion of branched
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2020

Herpetopanone, a diterpene from Herpetosiphon aurantiacus discovered by isotope labeling

  • Xinli Pan,
  • Nicole Domin,
  • Sebastian Schieferdecker,
  • Hirokazu Kage,
  • Martin Roth and
  • Markus Nett

Beilstein J. Org. Chem. 2017, 13, 2458–2465, doi:10.3762/bjoc.13.242

Graphical Abstract
  • predatory bacterium Herpetosiphon aurantiacus 114-95T as a test organism. This strain is capable to produce a variety of polyketides and nonribosomal peptides [13][14][15] and possesses pathways to supply specific building blocks for these natural products [16]. Furthermore, genomic analyses revealed that H
PDF
Album
Supp Info
Full Research Paper
Published 17 Nov 2017

Streptopyridines, volatile pyridine alkaloids produced by Streptomyces sp. FORM5

  • Ulrike Groenhagen,
  • Michael Maczka,
  • Jeroen S. Dickschat and
  • Stefan Schulz

Beilstein J. Org. Chem. 2014, 10, 1421–1432, doi:10.3762/bjoc.10.146

Graphical Abstract
  • polyketides, nonribosomal peptides, terpenoids, alkaloids, lipids and others. Such compounds became a major source of biologically active natural products as antibiotics, cytotoxic compounds, immunosuppressants etc. In addition, actinomycetes are also able to produce and release a wide variety of volatile
PDF
Album
Supp Info
Video
Full Research Paper
Published 24 Jun 2014
Other Beilstein-Institut Open Science Activities